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Abstract

Numerical simulations have been conducted for a homogeneous turbulent shear flow laden with small heavy particles in order to

investigate the modification of turbulence structures in shear flows due to particles. The effects on the turbulence modification of

gravitational settling of particles in the sheared direction are examined for the particles whose response times are comparable to the

Kolmogorov time-scale of turbulence. It is found that the growth rate of turbulence energy of the carrier fluid, which is reduced by

the particles in zero gravity, is increased by the effect of weak gravity through the enhancement of Reynolds shear stress, but de-

creased by the effect of strong gravity through the increase in drag dissipation. It is shown in finite gravity that particle clusters are

generated due to the accumulation of particles in two types of regions; downward flows sandwiched between counter rotating quasi-

streamwise vortex tubes and regions just beneath the vortex layers with negative spanwise vorticity. The particle clusters between the

pair vortex tubes intensify the downward flows between them to enhance the Reynolds shear stress, while the particle clusters

beneath the vortex layers enhance the drag dissipation of fluid turbulence energy in the streamwise direction. The downward flows

induced by particle clusters activate the tilting of the spanwise vorticity toward the vertical direction. � 2002 Elsevier Science Inc. All

rights reserved.
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1. Introduction

Turbulent gas flows with heavy particles have at-
tracted our attention because they are encountered in
nature and industries. Many studies have been carried
out to understand the flow characteristics, and the in-
teraction between particles and gas flow turbulence.
Experimental data indicate that addition of small par-
ticles attenuates turbulence, while that of large particles
augments turbulence of the gas flows in a horizontal
pipe (Tsuji and Morikawa, 1982), a vertical pipe (Tsuji
et al., 1984), a vertical boundary layer (Rogers and
Eaton, 1991) and a vertical channel (Kulick et al., 1994).
However, these wall-bounded flows contain both shear-
dominant, and inhomogeneous turbulence in near-wall
regions and nearly homogeneous turbulence in the core
regions. Therefore, the mechanism of the interaction has
not yet been fully understood from these data.

Some details of the interaction in homogeneous iso-
tropic turbulent gas flow have been clarified by the use
of numerical simulations. Squires and Eaton (1990)
found in their numerical simulation of forced homoge-
neous isotropic turbulence that the particles reduces the
kinetic energy of the carrier fluid flow. Elghobashi and
Truesdell (1993) showed that the particles in gravity
increases the kinetic energy of the carrier fluid flow as
a result of an inverse cascade of turbulence energy.

The clustering of the particles due to the interaction
in isotropic turbulent gas flow has been also discussed
from numerical or experimental results. Squires and
Eaton (1990, 1991) found the tendency of the particles
to accumulate in low-vorticity or high-strain regions.
Wang and Maxey (1993) have shown that the particles
in gravity tend to accumulate in downward flows, which
increases the mean settling velocity of the particles.
Recent experimental (Aliseda et al., 2002) and numerical
(Tanaka et al., 2000) studies indicate that the particle
accumulation or clustering causes the significant in-
crease in the particle settling velocity due to the effect
of the two-way coupling between the particles and the
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fluid flow. However, the relationship between particle
clustering and turbulence modulation has not yet been
well understood.

On the other hand, some details of the interaction in
homogeneous turbulent shear flows have been discussed
recently by the use of numerical simulations (Mashayek,
1998; Ahmed and Elghobashi, 2000). Mashayek (1998)
found that the presence of particles in zero gravity de-
creases the turbulence energy of the carrier fluid flow
and increases the anisotropy of the velocity field due to
the two-way coupling effect. Ahmed and Elghobashi
(2000) examined the modification of turbulence for par-
ticles in zero and finite gravities to find that the effect
of gravity enhances the growth of turbulence. They also
investigated the modification of the vorticity dynamics
by particles. However, the modification of vortical
structures and their dynamics, which may control the
dynamics of turbulence, has not been examined in detail.
In particular, no attentions have been focused on the
shear layer (vortex layer), which is one of the major
vortical structures in homogeneous turbulent shear
flows (Kida and Tanaka, 1994).

In the present study, the accumulation of particles
and turbulence modification in a homogeneous turbu-
lent shear flow are examined by the use of numerical
simulation. We particularly focus on the interaction
between vortical structures and particle clusters, which
is expected to control the development of turbulence.

2. Formulation

2.1. Fluid and particle motions

We consider the motions of small heavy spherical
particles in homogeneous turbulence subjected to the
mean flow in the x1 direction that is uniformly sheared in
the x2 direction, �uu ¼ ðcx2; 0; 0Þ, where c is the shear rate
(see Fig. 1). The particle is assumed to be small enough,

Nomenclature

c normalization constant for initial energy
spectrum

C, C mean and local volume fractions of particles
E turbulence kinetic energy of carrier fluid
EðkÞ energy spectrum
F source/sink of E due to phase interaction
Fij source/sink of hu0iu0ji due to phase interaction
fi reaction force exerted by particles on fluid
f 0
i fluctuating part of fi
g gravitational acceleration
k0 wavenumber at which the initial energy

spectrum takes its maximum
kmax maximum wavenumber, N=2
N number of grid points in each direction
p, p0 total and fluctuating pressures
Rk Taylor-microscale Reynolds number, Rk ¼

hu02i=m
ffiffiffiffiffiffiffiffiffiffi
hx02i

p
S� shear rate parameter, S� ¼ chu02i=mhx02i
ui, u0i fluid velocity and its fluctuating component
vi, v0i particle velocity and its deviation from the

mean shear

VS still-fluid terminal velocity of particle
wij vorticity anisotropy tensor, wij ¼ hx0

ix
0
ji=

hx0
kx

0
ki � ð1=3Þdij

xi coordinate
yi position of particle
a;b orientation angles of vorticity vector
dij Kronecker delta
� dissipation rate of fluid kinetic energy
c shear rate
g Kolmogorov length-scale of turbulence
m fluid viscosity
qf , qp fluid and particle densities
sK Kolmogorov time-scale of turbulence
sp particle response time
xi, x0

i total and fluctuating vorticity components
h i spatial average
h ip ensemble average over particles

Superscript
þ Normalization by Kolmogorov scales

Fig. 1. Configuration.
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compared to the Kolmogorov length-scale g of the tur-
bulence. Since we consider the particles of high density
ratio, only Stokes drag and gravitational forces are as-
sumed to act on the particles (Maxey and Riley, 1983).
In this study, we consider the gravity in the negative x2

direction. The particulate phase is assumed to be dilute
enough that the effects of inter-particle collisions are
neglected though the two-way interaction between two
phases is taken into account.

The motions of the carrier fluid are described by

oui
ot

þ uk
oui
oxk

¼ � 1

qf

op
oxi

� gdi2 þ mr2ui þ
1

qf

fi ð1Þ

with the solenoidal condition ouj=oxj ¼ 0, where ui, qf ,
p, and m are the velocity, density, pressure, and kine-
matic viscosity of the fluid, respectively. g denotes the
gravitational acceleration. fi represents a body force
which is the sum of the reaction forces exerted by the
particles on the fluid. Let us decompose the velocity into
the mean shear and the fluctuation,

ui ¼ cx2di1 þ u0i: ð2Þ
Substituting Eq. (2) for Eq. (1), we obtain the equation
for the fluctuating velocity as

ou0i
ot

þ cx2

ou0i
ox1

þ u0k
ou0i
oxk

¼ �cu02di1 �
1

qf

op0

oxi
þ mr2u0i þ

1

qf

f 0
i ;

ð3Þ

where p0 ¼ p � hpi and f 0
i ¼ fi � hfii. h i denotes the spa-

tial average. Here, the spatial average of fi and the term,
�gdi2, in Eq. (1) are assumed to be balanced by the
mean pressure gradient, that is, �ð1=qfÞohpi=oxi �
gdi2 þ hfii=qf ¼ 0. Ahmed and Elghobashi (2000) con-
sidered this type of pressure balance only in the vertical
direction though hf1i is generally non-zero in a shear
flow under gravity, as is indicated by Eq. (6). We have
carried out a computation with the same pressure bal-
ance as in Ahmed and Elghobashi (2000) to confirm that
the effects of the difference in the pressure balance are
slight within the range of parameters considered in this
study.

The particulate phase is tracked in the Lagrangian
frame. The motion of the spherical particle with dia-
meter, dp, is described by

dvi
dt

¼ 1

sp

uiðyÞð � vi � VSdi2Þ;
dyi
dt

¼ vi; ð4Þ

where yi and vi denote the position and the velocity
of the particle, respectively, and uiðyÞ represents the ve-
locity of the surrounding fluid. sp is the particle response
time, which is given by qpd

2
p=18qfm for Stokes flow,

where qp is the density of the solid particle. VS ¼ spg is
the still-fluid terminal velocity of the particle due to the
gravity. Decomposing the particle velocity as in Eq. (2),

vi ¼ cx2di1 þ v0i; ð5Þ

we obtain the evolution equation for v0i as

dv0i
dt

¼ d

dt
ðvi � cx2di1Þ ¼ �cv02di1 þ

1

sp

u0iðyÞ
�

� v0i � VSdi2

�
:

ð6Þ
Eq. (6) indicates that in a laminar simple shear flow the
particle moves faster than the mean shear at the particle
position by v01 ¼ �cspv02 ¼ cs2

pg > 0 for t � sp. This
means that particles in the simple shear flow drag the
fluid not only in the negative x2 (gravitational) direction
but also in the positive x1 direction. Since, in the present
study, the particles are distributed homogeneously due
to the periodicity of the computational domain (Section
2.3), the carrier fluid turbulence, which would be mod-
ified by the presence of the particles, remains homoge-
neous in space.

2.2. Turbulence energy

The time development of turbulence kinetic energy
of the carrier fluid, E ¼ ð1=2Þhu0ku0ki, is described by

dE
dt

¼ �c u01u
0
2

� �
� �þ F : ð7Þ

The first and second terms on the right-hand side of Eq.
(7) represent the rate of turbulence energy production
and the rate of turbulence energy dissipation, respec-
tively. F denotes the energy transfer to the fluid phase
due to the direct interaction with the particulate phase
through Stokes drag force;

F ¼ ð1=2ÞFkk;

Fij ¼
1

qf

fiu0j
D

þ fju0i
E

¼
qp

qf

C
sp

u0iðyÞ u0jðyÞ
	D

� v0j


þ u0jðyÞ u0iðyÞ

�
� v0i

�E
p
;

ð8Þ
where C represents the mean volume fraction of parti-
cles, and h ip denotes the ensemble average over parti-
cles. The last term in Eq. (8) was obtained by using the
homogeneity of the particle distribution.

2.3. Numerical method

Eq. (3) with the solenoidal condition ðou0j=oxj ¼ 0Þ
was solved on 1283 grid points in a rectangular box of
sides 4p � 2p � 2p, by using the Fourier spectral/Runge–
Kutta–Gill scheme. The initial velocity field was given by
the Fourier coefficients with a specified energy spectrum,

EðkÞ ¼ ck4 exp
�
�2k2=k2

0

�
; ð9Þ

and with a random phase. Here, c is a normalization
constant and k0 is a wavenumber at which the energy
spectrum takes the maximum. Homogeneous turbulent
shear flows are characterized by the two parameters;
the (Taylor-microscale) Reynolds number RkðtÞ ¼
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hu02i=m
ffiffiffiffiffiffiffiffiffiffi
hx02i

p
and the shear rate parameter S�ðtÞ ¼

chu02i=mhx02i, where x0 ¼ r � u0 denotes the fluctuating
vorticity. As in Kida and Tanaka (1992, 1994), the initial
values of these two parameters were set as Rkð0Þ ¼ 16
and S�ð0Þ ¼ 16, whereas a smaller value of k0 was em-
ployed in this simulation to obtain higher small-scale
resolution.

We have performed computations for 12 types of
particles with different values of inertia and settling ve-
locity, sþp 
 sp=sK ¼ 0:5, 1.0, 2.0 and V þ

S 
 sKVS=g ¼ 0,
1, 2, 4, where sK is the Kolmogorov time-scale of the
turbulence. We introduced 221 (¼2 097 152) particles
randomly throughout the computational domain at the
non-dimensional time of ct ¼ 4 where the turbulence
had attained the quasi-equilibrium state (Kida and Ta-
naka, 1992). Each computation was conducted until
ct ¼ 12. Since the Kolmogorov scales, sK and g, de-
crease gradually with time, their values at the middle
time (ct ¼ 8) were adopted as the representatives of the
scales through the period of the computation.

The particle volume fraction was C ¼ 8:24 � 10�5.
Recently, Yamamoto et al. (2001) have found in their
numerical simulations of gas–solid turbulent flows in
a vertical channel that inter-particle collisions play an
important role in the interaction between particle mo-
tion and gas turbulence even for a solid volume fraction
of Oð10�4Þ. We have checked that the particle mean free
times are much (Oð102Þ times) longer than the particle
response time. Therefore, the effects of inter-particle
collisions may be neglected in our simulation. The pa-
rameters employed in this simulation are summarized in
Table 1.

The initial particle velocity was set to be the same
as the surrounding fluid velocity. Third-order Lagrange
interpolation was used both for the evaluation of fluid
velocity at the particle position from its neighboring grid
points and for the distribution to the grid points of the
reaction force exerted by the particle on the fluid (Sun-
daram and Collins, 1996). kmaxg was 1.80 at ct ¼ 4, where
kmax ¼ N=2 (N ¼ 128) is the maximum wavenumber. We
integrated Eq. (4) using the Runge–Kutta–Gill scheme.
In zero gravity, the particle Reynolds number remained
less than unity throughout the computation for more
than 99% of particles, though, in the case of V þ

S ¼ 4, it
exceeded unity for about 10% of particles at the end of
the computation (ct ¼ 12). In this study, we focus on the
case of sþp ¼ 1, and the effects of gravity are examined by
changing the value of V þ

S as V þ
S ¼ 0, 2, 4.

3. Results

3.1. Turbulence energy

Fig. 2 shows the time development of turbulence ki-
netic energy of the carrier fluid which is normalized by T
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the value at the time of particle injection (ct ¼ 4). As
reported before (Kida and Tanaka, 1992), the turbu-
lence energy in the single-phase flow increases expo-
nentially in time. It is seen that the growth of turbulence
energy is suppressed by the injection of the particles in
zero gravity as was shown in Mashayek (1998). For the
case of V þ

S ¼ 2, except at initial times, the particles in
the gravity increase the turbulence energy compared to
the case of zero gravity. This is in agreement with the
result in Ahmed and Elghobashi (2000). However, a fur-
ther increase of the gravity again attenuates the growth
of turbulence (V þ

S ¼ 4).
In order to understand the mechanisms of the tur-

bulence modification, we consider the budget for the
turbulence kinetic energy (Eq. (7)). Fig. 3 shows the time
development of the non-dimensional growth rate of
energy, ð1=EÞdE=dðctÞ, which obeys

1

cE
dE
dt

¼ �hu01u02i
E

� �

cE
þ F

cE
: ð10Þ

The production (first), the dissipation (second), and the
phase-interaction (third) terms in the right-hand side of
Eq. (10) are also plotted in Fig. 3. The attenuation of
turbulence in zero gravity is triggered mainly by the
decrease in the production of turbulence energy, though
the phase-interaction term also contributes to the de-
crease of the energy particularly at later times when the
effective particle inertia, sp=sK, becomes larger. It is
found that the presence of particles reduces the energy
production, �chu01u02i, directly through the phase-inter-
action term, �cF12 and indirectly through the suppres-
sion of the production term, c2hu02u02i, in the evolution
equation of �chu01u02i (not shown here).

The energy production increases with gravity. The
augmentation of turbulence at V þ

S ¼ 2 is caused by this
increase of Reynolds shear stress. The phase-interaction

term, on the other hand, takes large negative values for
V þ

S � 1, which suppresses the development of turbu-
lence, particularly in an initial period.

The phase-interaction term affects the fluid flow dif-
ferently depending on the directions. Fig. 4 shows the
time development of the phase-interaction term, Fii, in
the evolution equation of hu0iu0ii. In the case of zero
gravity, the streamwise component, F11, takes positive
values and is greater than the other two components, F22

and F33. This is consistent with the previous finding
(Reeks, 1993; Liljegren, 1993; Simonin et al., 1995) that
the effect of the mean shear and the particle inertia in-
creases the streamwise particle velocity variance. The
vertical component, F22, increases with gravity, which
indicates that some of the potential energy of the par-
ticles in gravity is being converted to the kinetic energy

Fig. 3. Time development of the growth rate of the turbulence kinetic

energy and contributions to the growth rate from the production,

dissipation and phase-interaction terms: (––) single-phase, (- - -)

V þ
S ¼ 0, (� � �) V þ

S ¼ 2, (– � –) V þ
S ¼ 4.

Fig. 2. Time development of turbulence kinetic energy of the carrier

fluid: (––) single-phase, (- - -) V þ
S ¼ 0, (� � �) V þ

S ¼ 2, (– � –) V þ
S ¼ 4.
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of the carrier fluid. The streamwise and spanwise com-
ponents, on the other hand, decrease with the increase of
gravity. Since the surrounding fluid velocity of a falling
particle changes rapidly due to the crossing trajectories
effect (Csanady, 1963), the particle turbulence kinetic
energy is effectively reduced by its inertia. This may lead
to the reduction of fluid kinetic energy as well through
the two-way coupling between two phases. The notice-
able decrease of F11 compared to that of F33 is caused
by the interaction between particle clusters and vortical
structures (see Section 3.3). The relations F11 > 0 and
F33 < F22 < 0 in zero gravity were also found in Ahmed
and Elghobashi (2000).

Finally, we briefly mention the dependence on the
particle response time (figures are not shown). For
V þ

S ¼ 0, the reduction rate of turbulence kinetic energy
increases with sp, which is in agreement with the result in
Ahmed and Elghobashi (2000). This is mainly caused by
the increase in the drag dissipation. The augmentation
of turbulence due to (small or moderate) gravity is more
noticeable at smaller values of sp. This is because the
particle inertia suppresses the increase of Reynolds
shear stress due to gravity. The anisotropy of velocity
and vorticity fields, on the other hand, exhibits relatively
weak dependence on the particle inertia, and its change
due to gravity is qualitatively the same for all of the
three cases considered here.

3.2. Vorticity dynamics

The time development of turbulence enstrophy,
hx0

kx
0
ki, is shown in Fig. 5. The presence of particles in

zero gravity enhances the development of the enstrophy

slightly in the initial instant, but suppresses it signifi-
cantly for ct > 7. The enstrophy is reduced further for
V þ

S ¼ 4.
The particles modulate the vorticity field in an an-

isotropic manner. Fig. 6 shows the time development of
the anisotropy tensor of vorticity field, wij ¼ hx0

ix
0
ji=

Fig. 4. Time development of Fii (Eq. (7)): (––) single-phase, (- - -)

V þ
S ¼ 0, (� � �) V þ

S ¼ 2, (– � –) V þ
S ¼ 4.

Fig. 5. Time development of turbulence enstrophy: (––) single-phase,

(- - -) V þ
S ¼ 0, (� � �) V þ

S ¼ 2, (– � –) V þ
S ¼ 4.

Fig. 6. Time development of vorticity anisotropy tensor: (––) single-

phase, (- - -) V þ
S ¼ 0, (� � �) V þ

S ¼ 2, (– � –) V þ
S ¼ 4.
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hx0
kx

0
ki � ð1=3Þdij. For times ct < 4, w11 takes positive

values, which corresponds to the development of quasi-
streamwise vortex tubes. These vortices induce the
strong straining flows, which stretch the mean shear
vorticity to generate the vortex layers with negative
spanwise vorticity. The increase of w33 after ct ¼ 2 cor-
responds to this development of the vortex layers (Kida
and Tanaka, 1994). Decrease of w33 for ct > 10 indicates
that some of the vortex layers have rolled up into hair-
pin vortices. The presence of particles in zero gravity
reduces the relative magnitude of streamwise vorticity
w11, and increases that of spanwise vorticity w33. In finite
gravity, the injection of particles leads to the increase in
w22 and w12, and to the decrease in w33.

In order to gain further insight into the modification
of the vorticity field, we introduce the orientation angles
a and b of vorticity vector, which are defined as
(Kawahara et al., 1997)

x1 ¼ jxj cos a;

x2 ¼ jxj sin a cos b;

x3 ¼ jxj sin a sin b;

ð11Þ

where xi ¼ x0
i � cdi3 is the total vorticity (Fig. 7). Fig. 8

shows the probability density function (pdf) of orienta-
tion angles a and b of the vorticity weighted by x2, that
is, the directional distribution of the local enstrophy.
For the single-phase flow, the pdf was normalized such
that the integral of the pdf over all orientation has the
value of unity. In order to observe the change of vor-
ticity amplitude due to the two-way coupling effects, the
pdfs for the other cases were also normalized by the
same normalization factor as that used for the single-
phase flow. The contour lines of level 1 is represented
by the bold line. The peak in the center (a ¼ p=2,
b ¼ �p=2) of each figure corresponds to the vortex
layers with negative spanwise vorticity. The other two
peaks located at (a � p=8, b ¼ 0) and (a � 7p=8,

b ¼ �p) correspond to the quasi-streamwise vortices,
which are inclined toward the x2 direction from the x1

direction.
Comparing Fig. 8(a) and (b), we notice that the peak

values of the pdf corresponding to the quasi-streamwise
vortices become smaller by the presence of particles in
zero gravity, indicating the attenuation of the quasi-
streamwise vortices. This is in agreement with theFig. 7. Orientation angles a and b.

Fig. 8. Directional distribution of enstrophy at ct ¼ 12 for (a) single-

phase flow, (b) V þ
S ¼ 0 and (c) V þ

S ¼ 2. Contour levels are 2p

(p ¼ �4;�3:5;�3; . . .). The bold line represents the contour line of

level 1.
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analytical results in Druzhinin (1995a,b), which show
that the vorticity is reduced at the cores of vortex tubes,
due to the effect of two-way coupling. The peak corre-
sponding to the vortex layers, on the other hand, takes a
slightly larger value than that in the single-phase flow (it
is more noticeable at earlier times when the attenuation
of turbulence is less significant). This indicates the ex-
istence of a mechanism that leads to the intensification
of the vortex layers. For V þ

S ¼ 2, the streamwise vortices
are intensified compared to the case of V þ

S ¼ 0. Another
distinguished feature in finite gravity is the modification
of the enstrophy distribution around the peak corre-
sponding to the vortex layers (Fig. 8(c)). The distribu-
tion is elongated in the �x2 direction (a ¼ p=2, b ¼ 0,
�p) as is denoted by arrows. It is interesting to note that
the drag forces do not directly generate the vertical
vorticity component if they are pointed to the gravita-
tional direction. Further analysis of the evolution
equation of vorticity has clarified that the vertical vor-
ticity is mainly generated by the non-linear (stretching-
and-tilting) term in the equation. In the next subsection,
we will show that the generation of the vertical vorticity
is caused by the tilting of vortex layers due to particle
clusters (Fig. 10).

3.3. Interaction between vortical structures and particle
clusters

In Fig. 9, we plot the averaged value of the particle
concentration conditioned on the spanwise vorticity, x0

3.

The tendency of particles to concentrate in the regions
of large negative values of spanwise vorticity is clearly
seen in zero gravity, which indicates that the particle
clustering is taking place at the vortex layers with
negative spanwise vorticity. In finite gravity, the distri-
bution is flattened. In fact, the particles tend to accu-
mulate beneath the vortex layers due to gravity (see Fig.
10(f)).

Now, let us examine the interactions of particle
clusters with vortical structures in order to identify the
processes that control the aforementioned phenomena.
Fig. 10 shows a typical example of such interaction
observed in the case of V þ

S ¼ 2. Fig. 10(a)–(c) and
(d)–(e) respectively show the spatial distributions of
streamwise and spanwise vorticities on the x3–x2 planes.
Solid (broken) lines in Fig. 10(a)–(c) represent quasi-

Fig. 9. Particle concentration as a function of the spanwise vorticity,

x0
3, at ct ¼ 12. (––) V þ

S ¼ 0, (- - -) V þ
S ¼ 2.

Fig. 10. Typical example of the interactions between particle clusters

and vortical structures for V þ
S ¼ 2. (a, d) ct ¼ 10, (b, e) ct ¼ 11, (c, f)

ct ¼ 12. Spatial distributions of (a)–(c) streamwise and (d)–(f) spanwise

components of vorticity and local concentration of particles are shown

in a region of 28ð2p=128Þ � 28ð2p=128Þ in the x3–x2 planes. Darker

and lighter shades denote the regions of C P 2C and C PC, respec-

tively. Contour lines of x0
1 ¼ c, 2c, 4c, 6c (�c, �2c, �4c, �6c) are

denoted by solid (broken) lines in (a)–(c), while those of x0
3 ¼ �c,

�2c, �4c, �6c (c, 2c, 4c, 6c) are represented by solid (broken) lines in

(d)–(f).
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streamwise vortices which induce flows rotating clock-
wisely (counter clockwisely), while solid lines in Fig.
10(d)–(e) represent vortex layers with negative spanwise
vorticity. Shaded regions in each figure indicate high-
concentrated regions of the particles. The darker and
lighter shades denote the regions of C P 2C and C PC,
respectively, where C denotes the local volume fraction
of particles. Note that the cross section is moving in the
x1 direction with the structures from ct ¼ 10 (Fig. 10(a)
and (d)) to ct ¼ 12 (Fig. 10(c) and (f)). Here, we focus on
three pairs of counter rotating quasi-streamwise vortices
seen in Fig. 10(b). These vortex pairs are labeled by A,
B1 and B2 and marked by bold lines in Fig. 11(a). The
arrow indicates the direction of the flow induced by the
vortex pair. As is illustrated in Fig. 11(b), two vortex
pairs, aligned in the x3 direction, induce a strong strain-
ing flow between them, which stretches the mean span-
wise vorticity, as indicated by arrows, to generate the

vortex layer (Kida and Tanaka, 1994). A strong vor-
tex layer of negative spanwise vorticity seen in Fig.
10(d)–(f) is being stretched by the two vortex pairs, B1
and B2.

The settling particles are found to accumulate typi-
cally in two types of regions. We notice that the particles
are concentrated into the downward fluid between the
pair vortices A as in the case of isotropic turbulence
(Wang and Maxey, 1993). Another type of particle
cluster, which is rather horizontal, is found along the
vortex layer. Since the development of vortex layers is
often accompanied by high strain induced by vortex
pairs, small heavy particles tend to accumulate in the
vortex layers (see Fig. 11(b)). Because of the gravity, the
particles approach the vortex layer from above and a
particle cluster is eventually generated just beneath the
layer. Due to the downward flow induced by the cluster,
the vortex layer (and negative spanwise vorticity vectors
therein) is tilted toward the vertical direction as is shown
in Fig. 10(f). The vortex layer is deformed to a concave
shape by the induced flow as shown in Fig. 11(c) if the
symmetry of the structures in the spanwise direction is
sufficiently high. In general, the difference in strength of
the four quasi-streamwise vortices causes asymmetry,
and thus in most cases the vortex layer is tilted by the
cluster as shown in Fig. 11(d) or (e).

These vortex structures and particle clusters play an
important role in the evolution of turbulence energy. In
Fig. 12(a), regions of high Reynolds shear stress,
�chu01u02iP 0:05, are represented by light shades for the
single-phase flow on the same plane as Fig. 10(b) and
(e). Bold solid line represents the vortex layer of negative
spanwise vorticity. It is seen that the Reynolds shear
stress takes large values in the area between the pair
vortices A (Kida and Tanaka, 1992). The presence of
particles in zero gravity attenuates the Reynolds shear
stress (not shown) because the vortex pair A is weakened
by the particles. In the case of V þ

S ¼ 2 to the contrary, it
is enhanced in the region A as is shown in Fig. 12(b).
These results are consistent with those of Ahmed and
Elghobashi (2000). The enhancement of the Reynolds
shear stress in finite gravity is found to be caused by the
successive passing of particle clusters, which has inten-
sified the flow between the pair vortices in the negative
x2 and positive x1 directions. In Fig. 12(c), dark shades
denote the regions of large negative values of the direct
energy transfer due to the particles (F in Eq. (7)). It is
seen that the transfer takes large negative values in the
area beneath the vortex layer. It is found that this neg-
ative transfer mainly comes from the streamwise com-
ponent, F11 (not shown).

Fig. 13 illustrates the mechanism of the negative en-
ergy transfer that occurs when a cluster passes across a
vortex layer as a result of gravitational settling. In the
vortex layer, the streamwise component of the fluid ve-
locity decreases sharply in the gravitational (negative x2)

Fig. 11. Skematic of the interaction between a particle cluster and

vortical structures. Thin contour lines in (a) are the same as those in

Fig. 10(b), while thick lines in the figure denote the counter rotating

vortex pairs.
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direction. Because of their inertia, the settling particles
cannot follow the sharp decrease of the streamwise fluid
velocity and thus slip (relative to the surrounding fluid)

in the positive streamwise direction (see Eq. (6)). Since,
in general, the streamwise component of fluctuating
fluid velocity is negative beneath the vortex layer, the
drag forces in the positive streamwise direction reduce
the streamwise fluid velocity variance.

4. Conclusions

Numerical simulations have been carried out for a
homogeneous turbulent shear flow laden with small
heavy particles in the so-called two-way coupling re-
gime, where the effects of inter-particle collisions are
negligible, but the effects of the particulate phase on the
fluid phase should be considered. We have investigated
the particle clustering and the resulting turbulence
modification, focusing attentions on the interaction of
the particle clusters with the vortical structures in the
turbulence. The particles whose response times are
comparable to the Kolmogorov time-scale of the tur-
bulence are considered, taking account of the previous
finding that the preferential concentration of particles
(or particle clustering) is most noticeable for these par-
ticles. The effects on the turbulence modification of the
gravity in the sheared direction have been examined to
obtain the following results:

(1) In the case of zero gravity and moderate particle in-
ertia, the presence of particles suppresses the devel-
opment of turbulence kinetic energy of the carrier
fluid. At a finite value of gravity (V þ

S ¼ 2), the par-
ticles enhances the development of the turbulence
energy by the intensification of Reynolds shear
stress. At a larger value of gravity (V þ

S ¼ 4), how-
ever, the fluid turbulence is attenuated by the direct
phase-interaction with the particles.

(2) The particles in finite gravity tend to accumulate
in the two types of regions; downward flows sand-
wiched between counter rotating quasi-streamwise
vortex tubes and regions beneath the vortex layers
with negative spanwise vorticity.

Fig. 12. The spatial distribution of Reynolds shear stress, �cu1u2, at

ct ¼ 11 is plotted on the same plane as Fig. 10(b) for (a) the single-

phase flow and (b) V þ
S ¼ 2. Light and dark shades denote the regions

of �cu1u2 P 0:05 and �cu1u2 6 � 0:05, respectively. (c) The same as

Fig. 12(b) except that light and dark shades denote the regions of

F P 0:05 and F 6 0:05, respectively. Contour lines of x0
1 ¼ c, 2c, 4c, 6c

(�c, �2c, �4c, �6c) are represented by thin solid (broken) lines. Bold

solid line represents the regions of x0
3 6 � 3c.

Fig. 13. Drag dissipation due to the particle cluster.
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(3) The particle clusters between the pair vortex tubes
intensify the downward flows between them to en-
hance the Reynolds shear stress.

(4) The particle clusters beneath the vortex layers en-
hances the drag dissipation of the fluid turbulence
energy in the streamwise direction.

(5) The particle clusters induce the downward flows,
which tilt the spanwise vorticity in the vortex layers
to the vertical direction. This results in the increase
of the relative magnitude of the vertical vorticity.

Our numerical results indicate that the interaction
between the particle clusters and the vortical structures
plays an essential role in the turbulence modification
when the particle response time is of the order of the
Kolmogorov time-scale. It is also shown that the inter-
action is considerably affected by the gravity for the
particle settling velocity comparable to the Kolmogorov
velocity. Though no relevant experiments have been
conducted so far, the gravity is expected to be important
in some practical situations (see Appendix A).

Results obtained in this study show that the particle
clusters under gravity affect the growth of fluid turbu-
lence energy directly by the enhancement of Reynolds
shear stress and drag dissipation. They also influence the
growth of energy indirectly by modifying the dynamics
of the vortical structures in the sheared turbulence.
Relative importance of the indirect effects may increase
at higher Reynolds numbers. Therefore, it is important
to understand how every stage of the vortex dynam-
ics, i.e., the generation, development and interaction
of vortical structures, is affected by the particles. Further
details of the vortex dynamics, such as the regeneration
of quasi-streamwise vortices through roll-ups of the
vortex layers, should be examined in future studies.

Appendix A. On the effect of gravity

Our simulation indicates the importance of the
gravity for the turbulence dynamics. Unfortunately, no
available experimental data have been obtained so far
in the parameter range where our simulation was con-
ducted. However, practical values of normalized gravity,
gþ ¼ gs2

K=g, can be estimated for previous experi-
ments of (single-phase) homogeneous turbulent shear
flows as gþ � 2:0 for Champagne et al. (1970), 0.3 for
Tavoularis and Corrsin (1981), and 0.1–1.0 for Tavou-
laris and Karnik (1989). By comparing our numerical
results of sþp ¼ 2, V þ

S ¼ 1 with those of sþp ¼ 2, V þ
S ¼ 0,

we have found that the effects of the gravity of gþ � 0:5
are comparable to those the particles in zero gravity
have on the single-phase flow. Therefore, the effect
of gravity may be important for the experiments of
particle-laden flows which would be conducted under

the flow conditions employed in the previous experi-
ments.
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